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Electron-boson coupling: Beyond the 
equilibrium interpretation 

 
•  Electron-boson coupling in cuprates 

•  Boson interactions and population decay rates 

•  Violation of Matthiessen’s rule in the time domain 
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•  Indications of coupling to bosons 
–  Origin? 
–  Effects on quasiparticles 
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Kinks in the quasiparticle dispersion 
Lanzara,	Nature	(2001)	
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FIG. 1: (Color online) Nodal low-energy kink in Bi-2212
UD55. (a) Color image plot of raw data. The 70 meV and
low-energy kinks are marked by arrows and both can be seen
by eye in the raw data via a bend in the dispersion and an ac-
companying change in spectral intensity. (b) Band dispersion
derived by fitting the momentum distribution curve (MDCs,
intensity as a function of momentum at fixed energy) at each
energy in (a) to a Lorentzian. The low-energy kink is defined
by the deviation of the dispersion from vmid, the velocity fit
between 30-40 meV (dotted line). (c) MDC FWHM shows
a more rapid decrease close to Ef as a consequence of the
low-energy kink.

of the high-T
c

cuprates. A corresponding signature is
also seen in the MDC FWHM, which shows a more rapid
decrease for energies below the low-energy kink. Addi-
tionally, these features have been observed over a wide
doping range in underdoped Bi-2212, strengthening with
underdoping, suggesting that it may be a ubiquitous as-
pect of nodal physics.9

The 70 meV kink has been interpreted in terms of cou-
pling to a sharp bosonic mode of energy ⌦ which is of
either a lattice10–14 or magnetic15–18 origin. By anal-
ogy, it has been suggested that the low-energy kink can
be interpreted as coupling to an optical phonon.7 In Bi-
2212 there are known infrared active optical modes at 97
(12) and 117 cm�1 (14.5 meV) involving c-axis motion
of the Cu,Ca,Sr and Bi ions19 as well as a Raman ac-
tive c-axis optical branch between 58 and 65 cm�1 (7.2
and 8.1 meV) with the latter recently invoked to explain
the low-energy kink.7 However, coupling to these optical
modes is likely to be electrostatic in nature and therefore
not sharply peaked in momentum space. Such a coupling
would would produce a kink at ⌦+�0.13–15,20 However,
it is possible to have a non-gap-shifted feature in the self-
energy near the node if the coupling is strongly peaked
in the forward scattering direction.21 Such is the case for
the in-plane acoustic mode, which we consider here.

The generic form for the el-ph coupling Hamiltonian is

given by

H
el�ph

=
1p
N

X

k,q,�,⌫

|g
µ

(k,q)|2d†k�q,�dk,�(b
†
q,⌫ + b�q,⌫)

(1)
where d†k,� (dk,�) creates (annihilates) an electron in
the antibonding pd � �⇤ band with momentum k and
spin � and b†q,⌫ (bq,⌫) creates (annihilates) a phonon
quanta of momentum q in branch ⌫. For the in-
plane acoustic branch, the el-ph interaction arises via a
deformation-type coupling of the periodic lattice poten-
tial. In this case, momentum-dependent el-ph coupling
constant g(k,q) is only a function of q and is given by22

g(q) =
1

V
cell

s
~

2M⌦(q)
êq · qV (q)

✏(q)
(2)

with ⌦(q) the phonon dispersion, ✏(q) = 1 + q2
TF

/q2

the Thomas-Fermi dielectric function, q
TF

the Thomas-
Fermi wavevector, V

cell

= a2c the unit cell volume, M the
copper + oxygen ion mass, êq the phonon polarization
vector and V (q) = 4⇡e2/q2✏ the Coulomb potential with
✏ the static dielectric constant.
Apart from the dispersion of ⌦(q), Eq. (2) has a q-

dependence governed by / êq · q/(q2 + q2
TF

) which is
strongly peaked for q ⇠ q

TF

but with g(q) ! 0 for q ! 0.
In the underdoped cuprates the Thomas-Fermi wavevec-
tor is small and |g(q)|2 is sharply peaked for a subset of
small q.23 As a result, the el-ph self-energy is dominated
by contributions from scattering process from states Ek

to nearby states Ek+q, with E2(k) = ⇠2(k) + �2(k),
where ⇠(k) = ✏(k) � µ is the electron dispersion in the
normal state measured relative to the Fermi level.24 The
nodal self-energy is thus determined from scattering to
nearby states with a small superconducting gap and thus
the peak in the self-energy is not shifted by the full gap
but rather an average of the gap near the node.
To demonstrate this we now calculate the spectral

function for coupling to the acoustic phonon branch with

⌦(q) = ⌦0

q
sin2(q

x

a/2) + sin2(q
y

a/2)/
p
2 and ⌦0 = 15

meV.25 We also include coupling to the 55 and 36 meV
in- and out-of-phase c-axis polarized modes (the so-called
A1g and B1g branches, respectively), as well as the 70
meV Cu-O bond-stretching modes in order to also cap-
ture the well-known 70 meV kink and renormalizations at
higher binding energy. Since our focus is on the features
at low energy, we treat the optical modes as dispersion-
less with a momentum-independent coupling. The su-
perconducting gap is modelled with a pure d-wave form
�(k) = �0[cos(kxa) � cos(k

y

a)]/2, where �0 = 37 meV
is the maximum value at (0,⇡). We take the dielectric
constant to be set by a large in-plane value with ✏ = 30✏0
(in this context we regard ✏ as a free parameter set
to obtain overall agreement with experiment) and take
q
TF

= 0.5⇡/a. Finally, we take the e↵ective lattice con-
stants per plane to be a = b = 3.8 and c = 7.65 Å, appro-
priate for Bi-2212.19 The self-energy ⌃(k,!) and spectral
function A(k,!) are calculated within Migdal-Eliashberg
theory, which is the same formalism used in prior work to
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Figure 1 |Nodal QP spectral weight suppression after an infrared pump pulse. a, Energy–momentum map of equilibrium ARPES intensity before the pump
pulse (negative delay time). The momentum location of the cut is shown on the Fermi surface inset. The well-known dispersion kink is marked by the
arrow. b, Corresponding map of the transient ARPES intensity 0.3 ps after the pump pulse. The same colour scale is used for both panels. c, Energy
distribution curves (EDCs) from k1 to k7 for the equilibrium (a, in black) and transient state (b, in red). Each EDC pair is separated by the same momentum
value and vertically displaced by different amounts for clarity. Spectral weight loss (gain) is highlighted by the blue (red) areas. d, 1I!, the difference
between the transient and equilibrium EDCs, integrated through a momentum range centred around kF and shown by the red double arrow in a. e,f, Same
comparison as in c,d but with the equilibrium sample temperature at 120 K (Tc = 91 K). f, Plot is shown on the same scale as d.

a universal feature of the cuprates19. An obvious pump-induced
suppression of spectral intensity occurs which seems to be strictly
confined to the lowbinding energy region (binding energy< ¯h!0).

The data are compared more directly in Fig. 1c, which shows
raw energy distribution curves (EDCs—photoemission intensity as
a function of energy at constant momentum) for the equilibrium
(black) and transient (red) states, corresponding to the maps in
Fig. 1a,b, respectively. The EDCs are normalized only by the total
acquisition time and not by any further high binding energy
normalization scheme, and so a direct intensity comparison can
accurately be made. As in Fig. 1a,b, the characteristic energy ¯h!0
(marked by the vertical dotted line) separates sharp peaks from
broad ones. The sharp spectral peaks are signatures of coherentQPs.
The advantage of the high momentum resolution of the current
work is clearly seen by the sharpness and intensity of the QP peaks.
Again, there is a clear suppression of spectral weight in the transient
state, confined to theQPs at binding energies less than ¯h!0.

Such suppression cannot be explained by thermal smearing
of the Fermi edge due to the transient heating of the electronic
temperature caused by the absorbed pump energy. We find that
the transient electrons around EF quickly thermalize and follow
a Fermi–Dirac distribution within 100 fs of the ultrafast pump
pulse, in close agreement with ref. 16. Therefore the transient
electronic temperature at each delay time can be obtained by
direct measurement of the Fermi edge width of the corresponding
transient ARPES signal (see Supplementary Information for
details). The electronic temperature of the transient data of
Fig. 1 is thus found to be <100K, and does not account for
the observed spectral changes. This is clear from Fig. 1c by the
significant loss of spectral weight at binding energies larger than
4kBT = 34meV, which therefore cannot be attributed to Fermi
edge thermal smearing.

Figure 1d shows the difference of the transient and equilibrium
EDCs (1I!), integrated through a wide momentum range that
captures the extent of observed spectral changes. The negative
blue (positive red) area under the curve illustrates the total nodal
spectral weight lost (gained) after pumping as a function of binding

energy. Again, this clearly shows that photoinduced spectral change
is confined to binding energies less than the kink energy, ¯h!0.
Although it seems that the spectral loss (blue area) is larger than the
spectral gain (red area), we note that such a comparison involves
regions of vastly different signal intensities, as the count rate below
EF is far larger than that above. Even small nonlinearity effects
common to the typical photoelectron detectors used30 may impact
the relativemagnitudes of themeasured1I! above and belowEF.

In Fig. 1e,f, we present a similar comparison of EDCs associated
with equilibrium and transient states, but this time with an
equilibrium temperature of 120K, above the superconducting
transition Tc = 91K. Similar to the low temperature data, ¯h!0
separates sharp QP peaks from broad spectral features, and the
QP peak sharpens as momentum k! kF (E ! EF). The transient
state also has an elevated electronic temperature, here determined
to be ⇠145K (see Supplementary Information). In sharp contrast
to Fig. 1c,d, we do not observe a significant change in the
transient state’s QP spectral features in Fig. 1e,f. This shows that
the surprising pump-induced loss of nodal QP spectral weight is
extremely sensitive to the superconducting state.

Nodal quasiparticle temperature dependence
In Fig. 2 we investigate the role of transient heating by the
pump pulses in the nodal QP spectral weight suppression. This
was done by performing a standard equilibrium temperature
dependence. Figure 2a shows the resulting EDCs, symmetrized
about EF, at kF for several temperatures from 20K to above Tc.
The symmetrization removes thermal effects that enter through the
Fermi–Dirac distribution by effectively canceling out the Fermi–
Dirac function31. Unlike previous synchrotron data13–15, our laser
data show a substantial dependence of the nodal QP spectral
weight on temperature. This remarkable new observation, which
is probably due to the enhanced bulk sensitivity achieved with
relatively low photon energy by laser-ARPES (ref. 32), alone
challenges the notion of complete robustness of nodal QPs.

In Fig. 2b, we directly compare the temperature dependence of
the equilibrium QP spectral weight with pump-induced spectral
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been successfully used to describe the melting of a charge
density-wave state24 and the time evolution of electrons
in correlated metals25,26 via tr-ARPES and tr-reflectivity.
We connect the microscopic interaction parameters of
the electron-phonon interaction directly to the observed
timescales, and discuss the extension of the results ob-
tained here to more general models.

II. METHOD

We describe the time-evolution of the system via the
non-equilibrium Keldysh formalism. All Green’s func-
tions have two time arguments, where each time is lo-
cated on the Keldysh contour (see Fig. 1). The sys-
tems starts in equilibrium at a temperature T and time
t = tmin, and evolves until t = tfinal. The time-ordered,

t

min

t

min

� i�

t

max

FIG. 1: Keldysh contour used in the description of the double-
time Green’s functions and self-energies.

anti-time-ordered, lesser and greater Green’s functions
are formed by selecting t and t⇥ on appropriate parts of
the contour (see Refs. 1–3,7,8).

The driving fields are included directly into the propa-
gators via the Peierls substitution in the standard double-
time formalism, which leads to the bare non-equilibrium
Green’s function

G0
k(t, t

⇥) =i [nF (�(k))� ⇥c(t, t
⇥)]

⇥ exp

⌥
�i

� t

t0
dt̄ � (k�A(t̄))

�

where nF is the Fermi function at temperature T :
nF (⌅) = 1/(exp(⌅/T ) + 1), t and t⇥ lie on the Keldysh
contour, ⇥c is the contour-ordered Heaviside function,
�(k) is the single-particle dispersion, which we choose
to be a square lattice tight-binding model with nearest-
neighbor and next-nearest-neighbor hoppings Vnn = 0.25
eV and Vnnn = 0.075 eV, and a chemical potential
µ = �0.255 eV.

�(k) = �2Vnn (cos kx + cos ky) + 4Vnnn cos kx cos ky � µ

A(t) is the vector potential at time t, which is related
to the electric field via A(t) = �

´
E(t)dt. Here, we use

the convention that h̄ = c = e = 1, and we work in the
Hamiltonian gauge, i.e. the scalar potential is set to zero.
Energies and frequencies are measured in units of eV.

To illustrate the momentum-dependent quasiparticle
relaxation rates we introduce coupling of electrons to a

non-dispersive optical phonon with energy ⇥. As our
starting point, we use the Holstein model which couples
a band of electrons to a single species of optical phonon:

H =
 

k

�(k)c†kck +
 

q

⇥

⇧
b†qbq +

1

2

⌃

+
 

k,q,i

c†k+qck
⇤
bq + b†�q

⌅

We include the electron-phonon interactions in the
Migdal limit, which is appropriate for weak coupling.
Furthermore, since we are primarily interested in the re-
sponse of the electronic system, we will limit the discus-
sion to just the e⇤ects of the phonons on the electrons,
and will neglect the feedback of the electronic system on
the phonons.
For a non-dispersive optical phonon, the electronic self-

energy is

�(t, t⇥) = ig2
 

k

D0(t, t⇥)G0
k(t, t

⇥)

where g is the electron-phonon coupling strength. The
bare phonon Green’s function D0(t, t⇥) is

D0(t, t⇥) =� i [nB(⇥) + ⇥c(t, t
⇥)] exp (i⇥(t� t⇥))

� i [nB(⇥) + 1� ⇥c(t, t
⇥)] exp (�i⇥(t� t⇥))

where nB(⇥) is the Bose function at temperature T :
nB(⌅) = 1/(exp(⌅/T )� 1). In the following, we will use
various values of the electron-phonon coupling strength
g and the optical phonon frequency ⇥.
With the self-energy above, we solve the Dyson equa-

tion

Gk(t, t
⇥) = G0

k(t, t
⇥) +

�
dt1dt2G

0
k(t, t1)�(t1, t2)Gk(t2, t

⇥)

This can be done by casting the Dyson equation as
a matrix equation. However, for the case of electron-
phonon coupling, better numerical stability can be ob-
tained by expanding the integral through Langreth rules
and solving the equations of motion for the retarded, real-
imaginary, and lesser Green’s functions.4,5 This leads to
a set of Volterra integrodi⇤erential equations that can be
solved via standard numerical integration.6 We find that
the solution of the Dyson equation by integrating the
Volterra equations leads to more stable and inherently
causal algorithms. Some details about number of time
points go here.
The pulse that is of direct interest to pump-probe ex-

periments is, by nature, a propagating light pulse; this
implies an oscillating field without a zero-frequency com-
ponent. We model the pump via an oscillating vector po-
tential along the (11) direction with a Gaussian profile,
where we assume that the field is slowly varying spatially
and thus neglect the spatial dependence:

A(t) = (x̂+ ŷ)
Fmax

⌅p
sin(⌅pt) exp

�
� (t� t0)2

2⇤2

⇥

Gk(!) = G0
k(!) +G0

k(!)⌃(!)Gk(!)
self-energy Σ:
electron-electron scattering
electron-phonon scattering
...

Σ =

Ω

g	
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2
/2�
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0
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We study optimally doped Bi-2212 (Tc ¼ 96 K) using femtosecond time- and angle-resolved photo-
electron spectroscopy. Energy-resolved population lifetimes are extracted and compared with single-
particle lifetimes measured by equilibrium photoemission. The population lifetimes deviate from the
single-particle lifetimes in the low excitation limit by 1–2 orders of magnitude. Fundamental considerations
of electron scattering unveil that these two lifetimes are in general distinct, yet for systems with only
electron-phonon scattering they should converge in the low-temperature, low-fluence limit. The qualitative
disparity in our data, even in this limit, suggests that scattering channels beyond electron-phonon
interactions play a significant role in the electron dynamics of cuprate superconductors.
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Electron lifetime is a central quantity in condensedmatter
theories [1]. It determines macroscopic properties such as
electrical and thermal conductivities and encodes micro-
scopic scattering mechanisms [1–3]. Revealing dominant
scattering channels in copper-oxide high-temperature super-
conductors (cuprates) will be key to understanding the
complex interplay of orders underlying their phase diagram.
Electron lifetimes in cuprates have been studied in both

the energy and time domains. In the energy domain, angle-
resolved photoelectron spectroscopy (ARPES) [4–9] and
optical spectroscopy [10,11] access the imaginary part of
electron self-energy ImΣðϵÞ, which is connected to the
single-particle lifetime τsðϵÞ via ImΣðϵÞ ¼ ℏ=½2τsðϵÞ%. This
lifetime describes the relaxation process of an excited
single particle with energy ϵ. On the other hand, time-
resolved reflectivity [12–14] measures a lifetime τp asso-
ciated with the decay of a photoexcited electron population.
Systematically comparing τsðϵÞ and τpðϵÞmay provide new
insights into the underlying scattering mechanisms. To
understand the relation between these two lifetimes, one
needs to obtain the energy-resolved population lifetime
τpðϵÞ and directly compare with τsðϵÞ. Femtosecond time-
resolved ARPES (trARPES) provides this capability
[15–24]. Several trARPES studies have investigated the
relaxation of photoexcited electrons in cuprates [16–19].
Yet, so far, no energy-resolved lifetimes have been
extracted from the population dynamics in cuprates.
In this Letter, we employ trARPES and ARPES with

high-energy resolution to perform a detailed comparison

between τsðϵÞ and τpðϵÞ in optimally doped
Bi2Sr2Ca0.92Y0.08Cu2O8þδ (OP Bi-2212, Tc ¼ 96 K) along
the nodal direction [25]. At 20 K, τpðϵÞ extracted from
trARPES decreases with increasing excitation densities
below a characteristic energy of ∼60 meV, yet the trend is
reversed above this energy. At first glance, this character-
istic energy seems to agree with the mode energies as
identified by ARPES measurements of τsðϵÞ, but the
absolute values for τsðϵÞ and τpðϵÞ are different by 1–2
orders of magnitude. This disparity also existed in studies
on graphite and graphene [26–28]. We demonstrate that
τsðϵÞ and τpðϵÞ reflect different aspects of electron scatter-
ing phenomena and that processes beyond electron-phonon
interactions contribute to the disparity. The understanding
of this disparity is of importance to future trARPES
experiments on all materials.
Our trARPES setup is based on a Ti∶sapphire regener-

ative amplifier operating at a repetition rate of 800 kHz.
Infrared pump pulses with 1.5 eV photon energy excite the
sample; ultraviolet probe pulses with 6 eV photon energy
generate photoelectrons which are collected by a Scienta
R4000 analyzer. High-quality single crystals of OP Bi-
2212 [25] are cleaved in ultrahigh vacuum with a pressure
<7 × 10−11 torr. Typical energy, momentum, and time
resolutions for the trARPES setup are 22 meV,
0.001 Å−1, and 100 fs, respectively. Our ARPES meas-
urement is performed at Beam line 5-4 of the Stanford
Synchrotron Radiation Lightsource. Synchrotron light with
7 eV photon energy generates photoelectrons which are
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collected by a Scienta R4000 analyzer. The sample prepa-
ration procedure is the same as that for the trARPES
measurement. The combined energy resolution is 3 meV.
We study the cut along the nodal direction in Bi-2212 as

shown in Fig. 1(b). A clear kink in the band dispersion
∼70 meV below the Fermi level EF can be identified. This
indicates a strong bosonic coupling and agrees with
previous ARPES investigations [4–9].
trARPES measurements are also performed on the nodal

cut. For the following analysis and discussion, we focus on
the photoexcited electron population above EF [29]. We
integrate over the whole momentum range of the cut as
illustrated in Fig. 1(b) and subtract the signal before
pumping. Energy-resolved transient electron populations
are obtained by binning the data into 8 meV energy
intervals and plotting as a function of pump-probe delay.
The population dynamics normalized by their peak inten-
sities are shown in Figs. 1(c)–1(e) for incident fluences of
10, 27, and 60 μJ · cm−2 at T ¼ 20 K. The population
dynamics for the same set of fluences at 120 K are
displayed in Figs. 1(g)–1(i). These population dynamics
are fitted with an exponential decay convolved with a
Gaussian function for initial delays as defined by a 20%
intensity cutoff [12,18,29]. This yields the population
decay rates as a function of energy, which are displayed

in Figs. 1(f) and 1(j). The fit results are insensitive to the
choice of cutoff values [29].
We first examine the energy dependence of the pop-

ulation dynamics. A pronounced energy dependence is
most clearly observed for the 10 μJ · cm−2 data at 20 K
[Fig. 1(c)]. Notably, an abrupt change of the population
dynamics occurs near 60 meV. Below this energy the
populations increase for ∼0.5 ps before reaching their
maxima, and live as long as a few ps; above this energy
the populations reach their maxima near time zero, and
decay within a few 100 fs. Consistently, the corresponding
decay rate in Fig. 1(f) displays a pronounced increase by 1
order of magnitude near 60 meV. The energy dependence
for the same fluence at 120 K is less drastic [Fig. 1(g)].
Populations at all energies reach their maxima near time
zero, and decay in a few 100 fs. Nevertheless, an abrupt
increase near 60–80 meV is observed in the decay rate
[Fig. 1(j)].
We then study the excitation-density dependence of the

population dynamics. The excitation density is character-
ized by the pump fluence which specifies the incident
energy per unit area. At 20 K, the rising edges become
gradually less delayed as the fluence increases. Moreover,
the extracted decay rates display a pivoting behavior when
tuning the pump fluence [Figs. 1(f) and 2(a)]. Below

FIG. 1 (color online). Energy-resolved population decay analysis. (a) Scheme of a pump-probe photoemission experiment. (b) Nodal
cut obtained by 6 eV photoemission at 20 K. Boxes mark the windows for momentum integration and 8 meVenergy binning used for the
population decay analysis. (c)–(e) Population dynamics normalized by peak intensities at 20 K for incident excitation densities
(fluences) of 10, 27, and 60 μJ · cm−2, respectively. (g)–(i) Population dynamics at 120 K for the same set of excitation densities. (f),(j)
Population decay rates extracted by fitting the transients with a Gaussian-convolved exponential decay at initial delays
[ΔIðtÞ > 20%ΔImax]. The fitting curves (thick black lines) are overlaid on the population dynamics.
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Electron lifetime is a central quantity in condensedmatter
theories [1]. It determines macroscopic properties such as
electrical and thermal conductivities and encodes micro-
scopic scattering mechanisms [1–3]. Revealing dominant
scattering channels in copper-oxide high-temperature super-
conductors (cuprates) will be key to understanding the
complex interplay of orders underlying their phase diagram.
Electron lifetimes in cuprates have been studied in both

the energy and time domains. In the energy domain, angle-
resolved photoelectron spectroscopy (ARPES) [4–9] and
optical spectroscopy [10,11] access the imaginary part of
electron self-energy ImΣðϵÞ, which is connected to the
single-particle lifetime τsðϵÞ via ImΣðϵÞ ¼ ℏ=½2τsðϵÞ%. This
lifetime describes the relaxation process of an excited
single particle with energy ϵ. On the other hand, time-
resolved reflectivity [12–14] measures a lifetime τp asso-
ciated with the decay of a photoexcited electron population.
Systematically comparing τsðϵÞ and τpðϵÞmay provide new
insights into the underlying scattering mechanisms. To
understand the relation between these two lifetimes, one
needs to obtain the energy-resolved population lifetime
τpðϵÞ and directly compare with τsðϵÞ. Femtosecond time-
resolved ARPES (trARPES) provides this capability
[15–24]. Several trARPES studies have investigated the
relaxation of photoexcited electrons in cuprates [16–19].
Yet, so far, no energy-resolved lifetimes have been
extracted from the population dynamics in cuprates.
In this Letter, we employ trARPES and ARPES with

high-energy resolution to perform a detailed comparison

between τsðϵÞ and τpðϵÞ in optimally doped
Bi2Sr2Ca0.92Y0.08Cu2O8þδ (OP Bi-2212, Tc ¼ 96 K) along
the nodal direction [25]. At 20 K, τpðϵÞ extracted from
trARPES decreases with increasing excitation densities
below a characteristic energy of ∼60 meV, yet the trend is
reversed above this energy. At first glance, this character-
istic energy seems to agree with the mode energies as
identified by ARPES measurements of τsðϵÞ, but the
absolute values for τsðϵÞ and τpðϵÞ are different by 1–2
orders of magnitude. This disparity also existed in studies
on graphite and graphene [26–28]. We demonstrate that
τsðϵÞ and τpðϵÞ reflect different aspects of electron scatter-
ing phenomena and that processes beyond electron-phonon
interactions contribute to the disparity. The understanding
of this disparity is of importance to future trARPES
experiments on all materials.
Our trARPES setup is based on a Ti∶sapphire regener-

ative amplifier operating at a repetition rate of 800 kHz.
Infrared pump pulses with 1.5 eV photon energy excite the
sample; ultraviolet probe pulses with 6 eV photon energy
generate photoelectrons which are collected by a Scienta
R4000 analyzer. High-quality single crystals of OP Bi-
2212 [25] are cleaved in ultrahigh vacuum with a pressure
<7 × 10−11 torr. Typical energy, momentum, and time
resolutions for the trARPES setup are 22 meV,
0.001 Å−1, and 100 fs, respectively. Our ARPES meas-
urement is performed at Beam line 5-4 of the Stanford
Synchrotron Radiation Lightsource. Synchrotron light with
7 eV photon energy generates photoelectrons which are
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60 meV, the decay rate increases with increasing fluence.
Above 60 meV, the decay rate weakly decreases. This
pivoting is much weaker at 120 K, where the decay rates are
approximately fluence independent [Fig. 1(j)].
We summarize the three key observations: (i) a ∼0.5 ps

rising edge at the lowest fluence and temperature; (ii) an
abrupt increase in decay rates near 60–80 meV at the
lowest fluence; (iii) a pivoting behavior for the rate curves
when tuning the pump fluence. This complex energy and
fluence dependences establish a multidimensional con-
straint for a microscopic understanding.
A delayed rising edge is usually attributed to cascade

processes which fill low-energy states using high-energy
electrons [23,31]. For cuprates, the d-wave gap indicates
that the available low-energy electronic states are only near
the node, which provides an additional constraint for
electron accumulation. This constraint should be lifted if
the superconducting gap is melted either by raising the
equilibrium temperature above Tc or by pumping beyond
the fluence of 15 μJ · cm−2, which is required to transiently
melt the gap [19,20]. Indeed, Fig. 1 shows that the rising
edges of the population dynamics are significantly short-
ened in both situations.
The abrupt change and the pivoting point of τp occur at

the same energy ∼60 meV, which is reminiscent of mode
energies revealed by ARPES measurements of τs. The
pivoting behavior of τp due to electron-phonon coupling
has been theoretically predicted [32]. This model further
predicts that τs and τp converge in the zero excitation limit,
yet we find a significant quantitative difference (Fig. 2). In
particular, if we compare ℏ=ð2τpÞ and ImΣ below 50 meV,
instead of converging ℏ=ð2τpÞ deviates further from ImΣ
when lowering the fluence. While ImΣ extracted from
ARPES depends on photon energy, it is always on the same
order of magnitude [5,8]. In contrast, the discrepancy

between τp from trARPES and τs from ARPES is 1–2
orders of magnitude.
While one may relate this discrepancy to unique scatter-

ing properties in cuprates, we notice that it is independent
of particular material systems. As shown in Table I, the
discrepancy between ℏ=ð2τpÞ and ImΣ exists also in
graphite and graphene [26–28].
The generality of this discrepancy poses a challenge for

connecting time-resolved experiments to single-particle
scattering properties. In the following we discuss the
conceptual difference between τp and τs and survey
representative scattering channels of importance to all
materials.
Collision integrals [1,33–35] provide a general formal-

ism for electron scattering processes:

dfðϵkÞ
dt

¼ −
Z

dk0

ð2πÞ3
Wk;k0fðϵkÞ½1 − fðϵk0Þ%

þ
Z

dk0

ð2πÞ3
Wk0;kfðϵk0Þ½1 − fðϵkÞ%: ð1Þ

where ϵk denotes the electronic state at momentum k on a
band dispersion, fðϵkÞ is the corresponding occupation,
and Wk;k0 stands for the probability of scattering from k to
k0. The two integrals in Eq. (1) represent the emptying
processes from the state at ϵk to other states and the filling
processes from other states back to the state at ϵk.
In equilibrium, all the scattering processes reach a

detailed balance such that dfðϵkÞ=dt ¼ 0. In nonequili-
brium and for perturbative excitations, fðϵkÞ and fðϵk0Þ are
transiently changed to fðϵkÞ þ δfðϵkÞ and fðϵk0Þþ
δfðϵk0Þ. Equation (1) is expanded to first order in δf to
describe the evolution of photoexcited electrons [35,36].
According to the definition of τsðϵkÞ, it is associated with
excitations that only change fðϵkÞ, and hence δfðϵk0Þ ¼ 0
in the Taylor expansion. This occurs in an ARPES
measurement where the incident photon probes the same
photohole as it excites [3]. Using this concept, we derive a
general expression for τsðϵkÞ:

1

τsðϵkÞ
¼ − 1

δfðϵkÞ
dδfðϵkÞ

dt

¼
Z

dk0

ð2πÞ3
fWk;k0 ½1 − fðϵk0Þ% þWk0;kfðϵk0Þg: ð2Þ

FIG. 2 (color online). Comparison between ImΣ (black lines)
obtained by ARPES below EF and population decay rates (solid
circles) obtained by trARPES above EF. Results for 20 K and
120 K are plotted in panels (a) and (b), respectively. The method
of extracting ImΣ from the ARPES data is described in the
Supplemental Material [29]. Note that the population decay rates
are magnified by a factor of 10 for visualization purposes.

TABLE I. Comparison of scattering rates at the apparent mode
energies (Ω0) obtained by ARPES and trARPES on several
materials.

Material Ω0 (meV) ImΣ (meV) ℏ=ð2τpÞ (meV)

OP Bi2212 70 33 1.8
Graphite [26,27] 200 170 1.6
Graphene [28] 200 118 0.37
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Consider interactions beyond electron-
phonon coupling 
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energy the unit of time. We choose V
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FIG. 1. Self-energies used in this study. a) Impurity self-
energy at the self-consistent Born level. b) Electron-phonon
self-energy at the Migdal level. c) Second order electron-
electron self-energy.

The electron-phonon interaction is treated at the self-
consistent Born level, where the self-energy is given by
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0) i.e.
the local Green’s function (see Fig. 1a). The superscript
C denotes that the quantity lives on the two-time
Keldysh contour[13]. Similarly, the impurity scattering
self-energy is
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(see Fig. 1b). The electron-electron interactions are in-
cluded at the level of second order perturbation theory
as
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el�el

(t, t0) = U2GC
loc

(t, t0)GC
loc
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(see Fig. 1c). Note that both the Hartree and Fock terms
have been absorbed into the chemical potential.

In all three cases, there exists a sum rule for the inter-
actions at this level of perturbation theory. As was dis-
cussed previously[2], the frequency-integrated electron-
phonon interactions obey

⌃
el�ph

(t, t) = �i(2n
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where n
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(⌦) is the Bose occupation of the phonon mode
⌦. The impurity and Coulomb scattering self-energies
can be shown to obey similar sum rules,

⌃
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⌃
el�el

(t, t) =� iU2n(1� n), (9)

where n is the electron density. These identities are true
at all times, and hold individually even when all three
types of interactions are present.
The equations of motion for the Green’s functions are

solved on the contour by using the methods described in
Ref. 14.

FIG. 2. Pump and probe field profiles

The field is included via the Peierls substitution k(t) =
k � A(t), where the vector potential A(t) is treated in
the Coulomb gauge. We use a pump of the form A(t) =
A

max

exp(�t2/2�2) sin(!t) in the (11) direction with ! =
0.5 eV, and � = 40. The field is illustrated in Fig. 2.
Single-particle spectral functions are obtained from the

Green’s functions via
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where p(t
1

, t
2

, t) is a two-dimensional normalized Gaus-
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The probe profile is shown in Fig. 2. The shift in momen-
tum due to the Peierls substitution has to be corrected
to obtain gauge-invariant spectra through

k̄ = k+
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Z
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0
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RESULTS

Individual cases

Figure 3 shows the time-dependent single particle spec-
tral function A(k,!, t) for times during, and after the
pump, for the electrons coupled to a single Holstein
mode. As previously reported, after excitation the elec-
trons scatter back to lower energies, with slower relax-
ation visible within a phonon frequency of the Fermi en-
ergy due to phase space restrictions.[1–3]

Electron-impurity interactions

Electron-impurity scattering provides the simplest
channel for linewidth broadening —it introduces a self-
energy with the imaginary part simply proportional to
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If	you	can	see	the	fingerprint	of	a	
boson	in	the	Yme	domain,	it	is	
capable	of	taking	energy	out	of	the	
electronic	system.	



Summary 
•  Dynamics	in	the	Dme	domain	are	not	always	
equivalent	to	frequency	domain	

•  Dynamics	in	the	Dme	domain	are	principally	
controlled	by	energy	transfer	processes	

•  We	can	use	this	to	separate/suppress	
interacDons	that	can	obscure	electron-boson	
interacDons	

•  InterpreDng	changes	in	the	spectra	using	
equilibrium	language	can	be	erroneous	
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